When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    For example, in geometry, two linearly independent vectors span a plane. To express that a vector space V is a linear span of a ... The closed linear span of E, ...

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field.

  4. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G.

  6. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    For example, itself is a face of ... then the linear span of C is equal to C - C and the largest vector subspace of X contained in C is equal to C ∩ ...

  7. Closure operator - Wikipedia

    en.wikipedia.org/wiki/Closure_operator

    Convex hull (red) of a polygon (yellow). The usual set closure from topology is a closure operator. Other examples include the linear span of a subset of a vector space, the convex hull or affine hull of a subset of a vector space or the lower semicontinuous hull ¯ of a function : {}, where is e.g. a normed space, defined implicitly ⁡ (¯) = ⁡ ¯, where ⁡ is the epigraph of a function .

  8. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .

  9. Schauder basis - Wikipedia

    en.wikipedia.org/wiki/Schauder_basis

    A sequence {x n} n ≥ 0 in V is a basic sequence if it is a Schauder basis of its closed linear span. Two Schauder bases, { b n } in V and { c n } in W , are said to be equivalent if there exist two constants c > 0 and C such that for every natural number N ≥ 0 and all sequences {α n } of scalars,