Search results
Results From The WOW.Com Content Network
The above formula defines the derivative of a polynomial even if the coefficients belong to a ... The skew-polynomial ring is defined similarly for a ring R and a ...
When the ring R of scalars is commutative, there is an alternative and equivalent definition of the formal derivative, which resembles the one seen in differential calculus. The element Y–X of the ring R[X,Y] divides Y n – X n for any nonnegative integer n, and therefore divides f(Y) – f(X) for any polynomial f in one
In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V. The explicit definition of the ring can be given as follows.
A matrix polynomial equation is an equality between two matrix polynomials, which holds for the specific matrices in question. A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R).
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals (which are related to, but not quite the same as, powers of prime ideals).
Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Given a ring R, the polynomial ring R[x] is the set of all polynomials in x that have coefficients in R. In the special case that R is also a field, the polynomial ring R[x] is a principal ideal domain and, more importantly to our discussion here, a Euclidean domain.
The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be ...