Search results
Results From The WOW.Com Content Network
Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
In medical research, epidemiology, social science, and biology, a cross-sectional study (also known as a cross-sectional analysis, transverse study, prevalence study) is a type of observational study that analyzes data from a population, or a representative subset, at a specific point in time—that is, cross-sectional data. [definition needed ...
For example, let the design effect, for estimating the population mean based on some sampling design, be 2. If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random ...
All completely randomized designs with one primary factor are defined by 3 numbers: k = number of factors (= 1 for these designs) L = number of levels; n = number of replications; and the total sample size (number of runs) is N = k × L × n.
The meaningfulness of the study data, or power, is indicated by the weight (size) of the box. More meaningful data, such as those from studies with greater sample sizes and smaller confidence intervals, is indicated by a larger sized box than data from less meaningful studies, and they contribute to the pooled result to a greater degree.
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century. Statistical graphics developed through attention to four problems: [3]
Rather than studying particular individuals across that whole period of time (e.g. 20–60 years) as in a longitudinal design, or multiple individuals of different ages at one time (e.g. 20, 25, 30, 35, 40, 45, 50, 55, and 60 years) as in a cross-sectional design, the researcher chooses a smaller time window (e.g. 20 years) to study multiple ...