Search results
Results From The WOW.Com Content Network
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function grows at an ever increasing rate, but is very remote from growing exponentially. For example, when it grows at 3 times its size, but when it grows at 30% of its size.
Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.
Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right). In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form ...
Malthusian growth model. A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of ...
Complex exponential function: The exponential function exactly maps all lines not parallel with the real or imaginary axis in the complex plane, to all logarithmic spirals in the complex plane with centre at : () = (+) + ⏟ = + = ( + ) ⏟ The pitch angle of the logarithmic spiral is the angle between the line and the imaginary axis.
In such graphs, exponential functions of the form f(x) = a · b x appear as straight lines with slope equal to the logarithm of b. Log-log graphs scale both axes logarithmically, which causes functions of the form f(x) = a · x k to be depicted as straight lines with slope equal to the exponent k. This is applied in visualizing and analyzing ...
In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. [1][2] Edgar Gilbert introduced the ...