Search results
Results From The WOW.Com Content Network
Later, it became a significant topic for Euler, who gave an explicit formula for all triangular numbers that are also perfect squares, among many other discoveries relating to figurate numbers. Figurate numbers have played a significant role in modern recreational mathematics. [9] In research mathematics, figurate numbers are studied by way of ...
This category includes not only articles about certain types of figurate numbers, but also articles about theorems and conjectures pertaining to, and properties of, figurate numbers. Subcategories This category has only the following subcategory.
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.
All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digit 1 or 5 in base 6, 8, and 12. Every centered square number except 1 is the hypotenuse of a Pythagorean triple (3-4-5, 5-12-13, 7-24-25, ...). This is exactly the sequence of Pythagorean ...
Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is
Prior to Descartes, figurate numbers had been studied by the ancient Greeks and by Johann Faulhaber, but only for polygonal numbers, pyramidal numbers, and cubes. Descartes introduced the study of figurate numbers based on the Platonic solids and some semiregular polyhedra ; his work included the icosahedral numbers.
Number systems have progressed from the use of fingers and tally marks, perhaps more than 40,000 years ago, to the use of sets of glyphs able to represent any conceivable number efficiently. The earliest known unambiguous notations for numbers emerged in Mesopotamia about 5000 or 6000 years ago.
On the patterns and the unusual properties of figurate numbers: 1974 Aug: On the fanciful history and the creative challenges of the puzzle game of tangrams: 1974 Sep: More on tangrams: Combinatorial problems and the game possibilities of snug tangrams 1974 Oct: On the paradoxical situations that arise from nontransitive relations: 1974 Nov