Search results
Results From The WOW.Com Content Network
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
When classification is performed by a computer, statistical methods are normally used to develop the algorithm.. Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features.
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level. It makes no adjustment for either table size or ties.
A i is the number of data type A at sample site i, B i is the number of data type B at sample site i, K is the number of sites sampled and || is the absolute value. This index is probably better known as the index of dissimilarity (D). [44] It is closely related to the Gini index. This index is biased as its expectation under a uniform ...