When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...

  3. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

  4. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point. In higher dimensions, Newton's method uses the gradient and the Hessian matrix of second derivatives of the function to be minimized.

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    The quadratic programming problem with n variables and m constraints can be formulated as follows. [2] Given: a real-valued, n-dimensional vector c, an n×n-dimensional real symmetric matrix Q, an m×n-dimensional real matrix A, and; an m-dimensional real vector b, the objective of quadratic programming is to find an n-dimensional vector x ...

  6. Successive parabolic interpolation - Wikipedia

    en.wikipedia.org/wiki/Successive_parabolic...

    Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...

  7. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Abū Kāmil Shujā ibn Aslam (Egypt, 10th century) in particular was the first to accept irrational numbers (often in the form of a square root, cube root or fourth root) as solutions to quadratic equations or as coefficients in an equation. [30] The 9th century Indian mathematician Sridhara wrote down rules for solving quadratic equations. [31]

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Finding the extrema of functionals is similar to finding the maxima and minima of functions. The maxima and minima of a function may be located by finding the points where its derivative vanishes (i.e., is equal to zero). The extrema of functionals may be obtained by finding functions for which the functional derivative is equal to

  9. Help:Displaying a formula - Wikipedia

    en.wikipedia.org/wiki/Help:Displaying_a_formula

    The text-only form of the LaTeX can be set via user preferences at My Preferences – Appearance – Math. The hidden MathML can be used by screen readers and other assistive technology. To display the MathML in Firefox: Install the Native MathML extension; Or copy its CSS rules to your Wikipedia user stylesheet.