Search results
Results From The WOW.Com Content Network
Crystallization separates a product from a liquid feed stream, often in extremely pure form, by cooling the feed stream or adding precipitants that lower the solubility of the desired product so that it forms crystals. The pure solid crystals are then separated from the remaining liquor by filtration or centrifugation.
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal.Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
Unit operations involve a physical change or chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions. For example, in milk processing, the following unit operations are involved: homogenization, pasteurization, and packaging. These unit operations are connected to ...
Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference in boiling point. Fractionation of components also takes place in column chromatography by a difference in affinity between stationary phase and the mobile phase.
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the ...
In chemistry, fractional crystallization is a stage-wise separation technique that relies on the liquid–solid phase change. This technique fractionates via differences in crystallization temperature and enables the purification of multi-component mixtures, as long as none of the constituents can act as solvents to the others. Due to the high ...
In the process, many small crystals formed initially (nuclei) slowly disappear, except for a few that grow larger, at the expense of the small crystals (crystal growth). The smaller crystals act as fuel for the growth of bigger crystals. Limiting Ostwald ripening is fundamental in modern technology for the solution synthesis of quantum dots. [17]