When.com Web Search

  1. Ad

    related to: laws of exponents over real numbers

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    This distinction is problematic, as the multivalued functions log z and z w are easily confused with their single-valued equivalents when substituting a real number for z. The rule about multiplying exponents for the case of positive real numbers must be modified in a multivalued context:

  4. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    One way of defining the exponential function over the complex numbers is to first define it for the domain of real numbers using one of the above characterizations, and then extend it as an analytic function, which is characterized by its values on any infinite domain set.

  5. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .

  6. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    When u and v are real numbers, they can be viewed as vectors in , and the triangle inequality expresses a relationship between absolute values. Pythagorean theorem : It states that the area of the square whose side is the hypotenuse (the side opposite the right angle ) is equal to the sum of the areas of the squares on the other two sides.

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  8. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is a special case of Euler's formula, which states that for any real number x, e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} where the inputs of the trigonometric functions sine and cosine are given in radians .

  9. Exponential field - Wikipedia

    en.wikipedia.org/wiki/Exponential_field

    A field is an algebraic structure composed of a set of elements, F, two binary operations, addition (+) such that F forms an abelian group with identity 0 F and multiplication (·), such that F excluding 0 F forms an abelian group under multiplication with identity 1 F, and such that multiplication is distributive over addition, that is for any elements a, b, c in F, one has a · (b + c) = (a ...