Search results
Results From The WOW.Com Content Network
Historically, mercurous sulfate has been used to catalyze the reaction. [3] Chlorosulfuric acid is also an effective agent: C 6 H 6 + HSO 3 Cl → C 6 H 5 SO 3 H + HCl. In contrast to aromatic nitration and most other electrophilic aromatic substitutions this reaction is reversible. Sulfonation takes place in concentrated acidic conditions and ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Reaction mechanism for the amine formation from a carboxylic acid via Schmidt reaction. In the reaction mechanism for the Schmidt reaction of ketones , the carbonyl group is activated by protonation for nucleophilic addition by the azide, forming azidohydrin 3 , which loses water in an elimination reaction to diazoiminium 5.
The Williamson reaction is also frequently used to prepare an ether indirectly from two alcohols. One of the alcohols is first converted to a leaving group (usually tosylate), then the two are reacted together. The alkoxide (or aryloxide) may be primary and secondary. Tertiary alkoxides tend to give elimination reaction because of steric hindrance.
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
Aluminum amalgam (Al/Hg) may be used for the chemoselective reduction of α-sulfonylated carbonyl groups. Carboxylic acid derivatives, acetals, thioacetals, amines, alcohols, and isolated double bonds are all inert to Al/Hg. Selective desulfonylation may be carried out on β-hydroxy sulfones without reductive elimination.
The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process. The reaction was first reported by Herbert C. Brown in the late 1950s [2] and it was recognized in his receiving the Nobel Prize in Chemistry in 1979.
Ethyl and benzyl esters are easily made thereby, and the reaction is noteworthy in that even the highly hindered tert-butyl alcohol gives very high yields in this synthesis. [ 8 ] Levi and Zanetti extended the Knorr synthesis in 1894 to the use of acetylacetone (2,4-pentanedione) in reaction with ethyl 2-oximinoacetoacetate.