Search results
Results From The WOW.Com Content Network
This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.
Java bytecode is used at runtime either interpreted by a JVM or compiled to machine code via just-in-time (JIT) compilation and run as a native application. As Java bytecode is designed for a cross-platform compatibility and security, a Java bytecode application tends to run consistently across various hardware and software configurations. [3]
Typical Java interpreters do not buffer the top-of-stack this way, however, because the program and stack have a mix of short and wide data values. If the hardwired stack machine has 2 or more top-stack registers, or a register file, then all memory access is avoided in this example and there is only 1 data cache cycle.
When bit 15 of the opcode is set, it indicates that the 8-bit operand address in opcode bits 0–6 and 14 is extended to 16 bits using bits 0–7 of the following instruction word. Such instructions are written with an L prefix (LADD vs. ADD) and take an extra cycle to execute.
Separate from the stack definition of a MISC architecture, is the MISC architecture being defined by the number of instructions supported. Typically a minimal instruction set computer is viewed as having 32 or fewer instructions, [1] [2] [3] where NOP, RESET, and CPUID type instructions are usually not counted by consensus due to their fundamental nature.
Address space layout randomization (ASLR) is a computer security technique involved in preventing exploitation of memory corruption vulnerabilities. [1] In order to prevent an attacker from reliably redirecting code execution to, for example, a particular exploited function in memory, ASLR randomly arranges the address space positions of key data areas of a process, including the base of the ...
The separate storage means the program and data memories may feature different bit widths, for example using 16-bit-wide instructions and 8-bit-wide data. They also mean that instruction prefetch can be performed in parallel with other activities.
Because of the low level of abstraction (hence the term "low-level") between the language and machine language, low-level languages are sometimes described as being "close to the hardware". Programs written in low-level languages tend to be relatively non-portable, due to being optimized for a certain type of system architecture. [1] [2] [3] [4]