Ads
related to: glycerol-3-phosphate dehydrogenase
Search results
Results From The WOW.Com Content Network
Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate (a.k.a. glycerone phosphate, outdated) to sn-glycerol 3-phosphate. [2] Glycerol-3-phosphate dehydrogenase serves as a major link between carbohydrate metabolism and lipid metabolism.
This gene encodes a member of the NAD-dependent glycerol-3-phosphate dehydrogenase family. The encoded protein plays a critical role in carbohydrate and lipid metabolism by catalyzing the reversible conversion of dihydroxyacetone phosphate (DHAP) and reduced nicotine adenine dinucleotide to glycerol 3-phosphate (G3P) and NAD+.
Identifiers; EC no. 1.1.5.3: CAS no. 9001-49-4 : Alt. names: valpha-glycerophosphate dehydrogenase, alpha-glycerophosphate dehydrogenase (acceptor), anaerobic glycerol-3-phosphate dehydrogenase, DL-glycerol 3-phosphate oxidase (misleading), FAD-dependent glycerol-3-phosphate dehydrogenase, FAD-dependent sn-glycerol-3-phosphate dehydrogenase, FAD-GPDH, FAD-linked glycerol 3-phosphate ...
The 3 substrates of this enzyme are sn-glycerol 3-phosphate, NAD +, and NADP +, whereas its 4 products are glycerone phosphate, NADH, NADPH, and H +. This enzyme belongs to the family of oxidoreductases , specifically those acting on the CH-OH group of donor with NAD + or NADP + as acceptor.
The glycerol phosphate shuttle was first characterized as a major route of mitochondrial hydride transport in the flight muscles of blow flies. [5] [6] It was initially believed that the system would be inactive in mammals due to the predominance of lactate dehydrogenase activity over glycerol-3-phosphate dehydrogenase 1 (GPD1) [5] [7] until high GPD1 and GPD2 activity were demonstrated in ...
Glycerol 3-phosphate is synthesized by reducing dihydroxyacetone phosphate (DHAP), an intermediate in glycolysis. The reduction is catalyzed by glycerol-3-phosphate dehydrogenase. DHAP and thus glycerol 3-phosphate can also be synthesized from amino acids and citric acid cycle intermediates via the glyceroneogenesis pathway. + NAD(P)H + H + → ...