Search results
Results From The WOW.Com Content Network
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable x {\displaystyle x} is denoted exp x {\displaystyle \exp x} or e x {\displaystyle e^{x}} , with the two notations used interchangeably.
The model can also be written in the form of a differential equation: = with initial condition: P(0)= P 0. This model is often referred to as the exponential law. [5] It is widely regarded in the field of population ecology as the first principle of population dynamics, [6] with Malthus as the founder.
Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function () = grows at an ever increasing rate, but is much slower than growing
Income is distributed according to a power-law known as the Pareto distribution (for example, the net worth of Americans is distributed according to a power law with an exponent of 2). On the one hand, this makes it incorrect to apply traditional statistics that are based on variance and standard deviation (such as regression analysis). [13]
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
Based on the above considerations, Wheldon [15] proposed a mathematical model of tumor growth, called the Gomp-Ex model, that slightly modifies the Gompertz law. In the Gomp-Ex model it is assumed that initially there is no competition for resources, so that the cellular population expands following the exponential law.
The limit that defines the exponential function converges for every complex value of x, and therefore it can be used to extend the definition of (), and thus , from the real numbers to any complex argument z. This extended exponential function still satisfies the exponential identity, and is commonly used for defining exponentiation for ...