When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate (square roots) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(square_roots)

    In particular, the two solutions of a quadratic equation are conjugate, as per the in the quadratic formula =. Complex conjugation is the special case where the square root is i = − 1 , {\displaystyle i={\sqrt {-1}},} the imaginary unit .

  3. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  4. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  5. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    One of the great triumphs of Galois Theory was the proof that for every n > 4, there exist polynomials of degree n which are not solvable by radicals (this was proven independently, using a similar method, by Niels Henrik Abel a few years before, and is the Abel–Ruffini theorem), and a systematic way for testing whether a specific polynomial ...

  6. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [23]

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    which if we make the simplifying assumption that b = 0, is equal to + + () This polynomial is of degree six, but only of degree three in z 2, and so the corresponding equation is solvable. By trial we can determine which three roots are the correct ones, and hence find the solutions of the quartic.

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]