Search results
Results From The WOW.Com Content Network
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. [1] There are several kinds of means (or "measures of central tendency ") in mathematics , especially in statistics .
In mathematics and statistics, the arithmetic mean (/ ˌ æ r ɪ θ ˈ m ɛ t ɪ k / arr-ith-MET-ik), arithmetic average, or just the mean or average (when the context is clear) is the sum of a collection of numbers divided by the count of numbers in the collection. [1] The collection is often a set of results from an experiment, an ...
In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list. For example, the mean average of the numbers 2, 3, 4, 7, and 9 (summing to ...
A simple way to calculate the mean of a series of angles (in the interval [0°, 360°)) is to calculate the mean of the cosines and sines of each angle, and obtain the angle by calculating the inverse tangent. Consider the following three angles as an example: 10, 20, and 30 degrees.
The geometric mean of the three numbers is the cube root of their product, for example with numbers , , and , the geometric mean is = =. The geometric mean is useful whenever the quantities to be averaged combine multiplicatively, such as population growth rates or interest rates of a financial investment.
For a number of applications, it is advantageous to avoid the shifting induced by using only "past" data. Hence a central moving average can be computed, using data equally spaced on either side of the point in the series where the mean is calculated. [3] This requires using an odd number of points in the sample window.
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f ( x ) over the interval ( a , b ) is defined by: [ 1 ]
A graphical interpretation of the harmonic mean, z of two numbers, x and y, and a nomogram to calculate it. The blue line shows that the harmonic mean of 6 and 2 is 3. The magenta line shows that the harmonic mean of 6 and −2 is −6.