When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .

  3. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    This removes 4 edges from each hexagonal great circle (retaining just one opposite pair of edges), so no continuous hexagonal great circles remain. Now 3 perpendicular edges meet and form the corner of a cube at each of the 16 remaining vertices, [be] and the 32 remaining edges divide the surface into 24 square faces and 8 cubic cells: a ...

  4. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices.

  5. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    Three mutually perpendicular golden ratio rectangles, with edges connecting their corners, form a regular icosahedron. Another way to construct it is by putting two points on each surface of a cube. In each face, draw a segment line between the midpoints of two opposite edges and locate two points with the golden ratio distance from each midpoint.

  6. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  7. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    If its three perpendicular edges are of unit length, its remaining edges are two of length √ 2 and one of length √ 3, so all its edges are edges or diagonals of the cube. The cube can be dissected into six such 3-orthoschemes four different ways, with all six surrounding the same √ 3 cube diagonal.

  8. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...

  9. Bidiakis cube - Wikipedia

    en.wikipedia.org/wiki/Bidiakis_cube

    The bidiakis cube is a cubic Hamiltonian graph and can be defined by the LCF notation [-6,4,-4] 4. The bidiakis cube can also be constructed from a cube by adding edges across the top and bottom faces which connect the centres of opposite sides of the faces. The two additional edges need to be perpendicular to each other.