When.com Web Search

  1. Ad

    related to: polyhedron coordinate pattern shape images download full

Search results

  1. Results From The WOW.Com Content Network
  2. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The format of each figure follows the same basic pattern image of polyhedron; name of polyhedron; alternate names (in brackets) Wythoff symbol; Numbering systems: W - number used by Wenninger in polyhedra models, U - uniform indexing, K - Kaleido indexing, C - numbering used in Coxeter et al. 'Uniform Polyhedra'.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  4. Coordination geometry - Wikipedia

    en.wikipedia.org/wiki/Coordination_geometry

    The geometrical pattern can be described as a polyhedron where the vertices of the polyhedron are the centres of the coordinating atoms in the ligands. [1] The coordination preference of a metal often varies with its oxidation state. The number of coordination bonds (coordination number) can vary from two in K[Ag(CN) 2] as high as 20 in Th(η 5 ...

  5. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron, with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h, 1 − h 2) with parameter h = 1. These coordinates illustrate that a rhombic dodecahedron can be seen as a cube with six square pyramids attached to each face, allowing them to fit together into a ...

  7. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry , such that they have 6 triangles at a vertex , except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra , of which all but the smallest one (which is a regular dodecahedron ) have mostly hexagonal faces.

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  9. Kepler–Poinsot polyhedron - Wikipedia

    en.wikipedia.org/wiki/Kepler–Poinsot_polyhedron

    The Kepler–Poinsot polyhedra exist in dual pairs. Duals have the same Petrie polygon, or more precisely, Petrie polygons with the same two dimensional projection. The following images show the two dual compounds with the same edge radius. They also show that the Petrie polygons are skew. Two relationships described in the article below are ...