When.com Web Search

  1. Ad

    related to: accuracy and precision statistics calculator test mode

Search results

  1. Results From The WOW.Com Content Network
  2. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]

  4. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  5. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    If not known and calculated from data, an accuracy comparison test could be made using "Two-proportion z-test, pooled for Ho: p1 = p2". Not used very much is the complementary statistic, the fraction incorrect (FiC): FC + FiC = 1, or (FP + FN)/(TP + TN + FP + FN) – this is the sum of the antidiagonal , divided by the total population.

  6. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  7. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    Precision takes all retrieved documents into account. It can also be evaluated considering only the topmost results returned by the system using Precision@k. Note that the meaning and usage of "precision" in the field of information retrieval differs from the definition of accuracy and precision within other branches of science and statistics.

  8. Calibration (statistics) - Wikipedia

    en.wikipedia.org/wiki/Calibration_(statistics)

    There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]

  9. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    This little-known but serious issue can be overcome by using an accuracy measure based on the logarithm of the accuracy ratio (the ratio of the predicted to actual value), given by ⁡ (). This approach leads to superior statistical properties and also leads to predictions which can be interpreted in terms of the geometric mean.