When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral , and that the regular hexagon can be partitioned into six equilateral triangles.

  3. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    A regular hexagon has nine diagonals: the six shorter ones are equal to each other in length; the three longer ones are equal to each other in length and intersect each other at the center of the hexagon. The ratio of a long diagonal to a side is 2, and the ratio of a short diagonal to a side is . A regular heptagon has 14 diagonals. The seven ...

  4. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    The most common high symmetry hexadecagons are d16, an isogonal hexadecagon constructed by eight mirrors can alternate long and short edges, and p16, an isotoxal hexadecagon constructed with equal edge lengths, but vertices alternating two different internal angles.

  5. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}.

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The two diagonals and the two tangency chords are concurrent. [11] [10]: p.11 One way to see this is as a limiting case of Brianchon's theorem, which states that a hexagon all of whose sides are tangent to a single conic section has three diagonals that meet at a point. From a tangential quadrilateral, one can form a hexagon with two 180 ...

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7]

  8. Hermann–Mauguin notation - Wikipedia

    en.wikipedia.org/wiki/Hermann–Mauguin_notation

    They are equivalent due to the presence of diagonal 3-fold axes. Second position – diagonal 3 or 3 axes. Third position – diagonal directions between any two of the three coordinate axes x, y, and z. These can be 2, m, or ⁠ 2 / m ⁠. All Hermann–Mauguin symbols presented above are called full symbols.

  9. Icositetragon - Wikipedia

    en.wikipedia.org/wiki/Icositetragon

    The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.