Ads
related to: simplifying polynomials problemsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
A polynomial is said to be univariate or multivariate, depending on whether it uses one or more variables. [34] Factorization is a method used to simplify polynomials, making it easier to analyze them and determine the values for which they evaluate to zero. Factorization consists in rewriting a polynomial as a product of several factors.
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.
Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients. More generally, when some variable are considered as parameters, like terms are defined similarly, but "numerical factors" must be replaced by "factors depending only on the parameters".
In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and
These algorithms proceed by a recursion on the number of variables to reduce the problem to a variant of the Euclidean algorithm. They are a fundamental tool in computer algebra, because computer algebra systems use them systematically to simplify fractions. Conversely, most of the modern theory of polynomial GCD has been developed to satisfy ...
A polynomial-time problem can be very difficult to solve in practice if the polynomial's degree or constants are large enough. In addition, information-theoretic security provides cryptographic methods that cannot be broken even with unlimited computing power. "A large-scale quantum computer would be able to efficiently solve NP-complete problems."
Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.