Search results
Results From The WOW.Com Content Network
A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...
In her memorial paper to Nicolas Minorsky published in the IEEE Transactions On Automatic Control, author Irmgard Flügge-Lotz stated that Minorsky's greatest contribution to the development of nonlinear mechanics in the U.S. was Minorsky's early recognition that important papers in the field were being published in the Soviet Union in a ...
PID controller (proportional-integral-derivative controller), a control concept used in automation; Piping and instrumentation diagram (P&ID), a diagram in the process industry which shows the piping of the process flow etc. Principal ideal domain, an algebraic structure; Process identifier, a number used by many operating systems to identify a ...
Classical control theory uses the Laplace transform to model the systems and signals. The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable.
Together with PID controllers, MPC systems are the most widely used control technique in process control. Robust control deals explicitly with uncertainty in its approach to controller design. Controllers designed using robust control methods tend to be able to cope with small differences between the true system and the nominal model used for ...
Process control instrumentation and designation (names, numbers, unique tag identifiers), including: Valves and their types and identifications (e.g. isolation, shutoff, relief and safety valves, valve interlocks) Control inputs and outputs (sensors and final elements, interlocks)
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. The idea can be illustrated as follows.
The Ziegler–Nichols tuning (represented by the 'Classic PID' equations in the table above) creates a "quarter wave decay". This is an acceptable result for some purposes, but not optimal for all applications. This tuning rule is meant to give PID loops best disturbance rejection. [2]