Ad
related to: two property rule in thermodynamics practice
Search results
Results From The WOW.Com Content Network
[1] [2] [3] The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. It predicts whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. For ...
Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.
Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
The state postulate is a term used in thermodynamics that defines the given number of properties to a thermodynamic system in a state of equilibrium. It is also sometimes referred to as the state principle. [1] The state postulate allows a finite number of properties to be specified in order to fully describe a state of thermodynamic equilibrium.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
To elucidate the connection with the triple product rule, consider the point p 1 at time t and its corresponding point (with the same height) p̄ 1 at t+Δt. Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1, and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right.