When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. R-tree - Wikipedia

    en.wikipedia.org/wiki/R-tree

    Simple example of an R-tree for 2D rectangles Visualization of an R*-tree for 3D points using ELKI (the cubes are directory pages). R-trees are tree data structures used for spatial access methods, i.e., for indexing multi-dimensional information such as geographical coordinates, rectangles or polygons.

  3. Hilbert R-tree - Wikipedia

    en.wikipedia.org/wiki/Hilbert_R-tree

    The performance of R-trees depends on the quality of the algorithm that clusters the data rectangles on a node. Hilbert R-trees use space-filling curves, and specifically the Hilbert curve, to impose a linear ordering on the data rectangles. There are two types of Hilbert R-trees: one for static databases, and one for dynamic databases. In both ...

  4. R*-tree - Wikipedia

    en.wikipedia.org/wiki/R*-tree

    In data processing R*-trees are a variant of R-trees used for indexing spatial information. R*-trees have slightly higher construction cost than standard R-trees, as the data may need to be reinserted; but the resulting tree will usually have a better query performance. Like the standard R-tree, it can store both point and spatial data.

  5. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    As special cases, the order-zero graph (a forest consisting of zero trees), a single tree, and an edgeless graph, are examples of forests. Since for every tree V − E = 1, we can easily count the number of trees that are within a forest by subtracting the difference between total vertices and total edges. V − E = number of trees in a forest.

  6. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    Trees can be used to represent and manipulate various mathematical structures, such as: Paths through an arbitrary node-and-edge graph (including multigraphs), by making multiple nodes in the tree for each graph node used in multiple paths; Any mathematical hierarchy; Tree structures are often used for mapping the relationships between things ...

  7. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  8. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.

  9. Real tree - Wikipedia

    en.wikipedia.org/wiki/Real_tree

    Here are equivalent characterizations of real trees which can be used as definitions: 1) (similar to trees as graphs) A real tree is a geodesic metric space which contains no subset homeomorphic to a circle. [1] 2) A real tree is a connected metric space (,) which has the four points condition [2] (see figure):