When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    k = 1 is the tangent line to the right of the circles looking from c 1 to c 2. k = −1 is the tangent line to the right of the circles looking from c 2 to c 1. The above assumes each circle has positive radius. If r 1 is positive and r 2 negative then c 1 will lie to the left of each line and c 2 to the right, and the two tangent lines will ...

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().

  4. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...

  5. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Consider, for example, the one-parameter family of tangent lines to the parabola y = x 2. These are given by the generating family F(t,(x,y)) = t 2 – 2tx + y. The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2).

  6. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ(x) = x + 1/x, which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits

  7. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    For example, the unit circle is ... The equation of the tangent line at a regular point (,) ... so the slope of the tangent line, and hence the slope of the curve at ...

  8. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz.

  9. Algebraic curve - Wikipedia

    en.wikipedia.org/wiki/Algebraic_curve

    The tangent at a point (a, b) of the curve is the line of equation () ′ (,) + ′ (,) =, like for every differentiable curve defined by an implicit equation. In the case of polynomials, another formula for the tangent has a simpler constant term and is more symmetric: