Search results
Results From The WOW.Com Content Network
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae , which compose larger spheroidal structures named spherulites .
The solidus temperature specifies the temperature below which a material is completely solid, [2] and the minimum temperature at which a melt can co-exist with crystals in thermodynamic equilibrium. Liquidus and solidus are mostly used for impure substances (mixtures) such as glasses, metal alloys, ceramics, rocks, and minerals.
Critical temperature. Following from the previous rule it is found that recrystallization requires a minimum temperature for the necessary atomic mechanisms to occur. This recrystallization temperature decreases with annealing time. Critical deformation. The prior deformation applied to the material must be adequate to provide nuclei and ...
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.
Liquid crystals can be divided into three main types: thermotropic, lyotropic, and metallotropic. Thermotropic and lyotropic liquid crystals consist mostly of organic molecules, although a few minerals are also known. Thermotropic LCs exhibit a phase transition into the LC phase as temperature changes.
In this technique, crystallization takes place without a temperature gradient between the growth and dissolution zones. The supersaturation is achieved by a gradual reduction in temperature of the solution in the autoclave. The disadvantage of this technique is the difficulty in controlling the growth process and introducing seed crystals. For ...
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes. [4 ...