When.com Web Search

  1. Ads

    related to: conjecture vs fermat's theorem examples questions and solutions worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat's Last Theorem considers solutions to the Fermat equation: a n + b n = c n with positive integers a, b, and c and an integer n greater than 2. There are several generalizations of the Fermat equation to more general equations that allow the exponent n to be a negative integer or rational, or to consider three different exponents.

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  4. Euler's sum of powers conjecture - Wikipedia

    en.wikipedia.org/wiki/Euler's_sum_of_powers...

    In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem.It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k:

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Fermat's Last Theorem was conjectured by Pierre de Fermat in the 1600s, states the impossibility of finding solutions in positive integers for the equation + = with >. Fermat himself gave a proof for the n = 4 case using his technique of infinite descent , and other special cases were subsequently proved, but the general case was not proven ...

  6. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    The equation + = has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 2. The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem.

  7. Fermat–Catalan conjecture - Wikipedia

    en.wikipedia.org/wiki/Fermat–Catalan_conjecture

    The first of these (1 m + 2 3 = 3 2) is the only solution where one of a, b or c is 1, according to the Catalan conjecture, proven in 2002 by Preda Mihăilescu. While this case leads to infinitely many solutions of (1) (since one can pick any m for m > 6), these solutions only give a single triplet of values (a m, b n, c k).