Ad
related to: conjecture vs fermat's theorem examples questions and solutions 1
Search results
Results From The WOW.Com Content Network
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
The Fermat–Catalan conjecture is an open conjecture dealing with such cases (the condition of this conjecture is that the sum of the reciprocals is less than 1). If we allow at most one of the exponents to be 2, then there may be only finitely many solutions (except the case 1 m + 2 3 = 3 2 {\displaystyle 1^{m}+2^{3}=3^{2}} ).
Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is a subfield of L. Given ...
Joseph-Louis Lagrange (1736–1813) was the first to give full proofs of some of Fermat's and Euler's work and observations—for instance, the four-square theorem and the basic theory of the misnamed "Pell's equation" (for which an algorithmic solution was found by Fermat and his contemporaries, and also by Jayadeva and Bhaskara II before them.)
The first of these (1 m + 2 3 = 3 2) is the only solution where one of a, b or c is 1, according to the Catalan conjecture, proven in 2002 by Preda Mihăilescu. While this case leads to infinitely many solutions of (1) (since one can pick any m for m > 6), these solutions only give a single triplet of values (a m, b n, c k).
In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem.It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many k th powers of positive integers is itself a k th power, then n is greater than or equal to k:
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]