Search results
Results From The WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
Roughly speaking, the prefix "sub-" is consistent because the current observation X n is less than (or equal to) the conditional expectation E[X n +1 | X 1,...,X n]. Consequently, the current observation provides support from below the future conditional expectation, and the process tends to increase in future time.
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra"; also σ-field, where the σ comes from the German "Summe" [1]) on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair (,) is called a measurable space.
Consider a Radon space (that is a probability measure defined on a Radon space endowed with the Borel sigma-algebra) and a real-valued random variable T. As discussed above, in this case there exists a regular conditional probability with respect to T .
Thus, we postulate that the conditional expectation of given is a simple linear function of , {} = +, where the measurement is a random vector, is a matrix and is a vector. This can be seen as the first order Taylor approximation of E { x ∣ y } {\displaystyle \operatorname {E} \{x\mid y\}} .
The usual statement of the lemma is formulated in terms of one random variable being measurable with respect to the -algebra generated by the other. The lemma plays an important role in the conditional expectation in probability theory, where it allows replacement of the conditioning on a random variable by conditioning on the σ {\displaystyle ...
In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of essentially bounded measurable functions on a σ {\displaystyle \sigma } -finite measure space ( X , μ ) {\displaystyle (X,\mu )} is the canonical example of a commutative von Neumann algebra .