Search results
Results From The WOW.Com Content Network
The medial lemniscus carries axons from most of the body and terminates by synapsing with third-order neurons in the ventral posterolateral nucleus of the thalamus. [3] at the level of the mamillary bodies. Sensory axons transmitting information from the head and neck via the trigeminal nerve synapse at the ventral posteromedial nucleus of the ...
The concept of "right-brained" or "left-brained" individuals is considered a widespread myth which oversimplifies the true nature of the brain's cerebral hemispheres (for a recent counter position, though, see below). Proof leading to the "mythbuster" of the left-/right-brained concept is increasing as more and more studies are brought to light.
The specific molecular mechanism that underpins this movement disorder is not well known. [2] However, most researchers suggest that it follows an autosomal dominant genetic inheritance pattern in which mutations in certain genes give rise to structural abnormalities in nervous system networks responsible for voluntary skeletal muscle movement, which, in turn, result in the functional movement ...
A single cause of autism has not been identified, but the mu wave and mirror neuron system have been studied specifically for their role in the disorder. In a typically developing individual, the mirror neuron system responds when they either watch someone perform a task or perform the task themself.
Neurons generate action potentials resulting from changes in the electric membrane potential. Neurons can generate multiple action potentials in sequence forming so-called spike trains. These spike trains are the basis for neural coding and information transfer in the brain.
Yet the same neurons become active when the monkey watches an experimenter grasp an object in the same way. The neurons are therefore both sensory and motor. Mirror neurons are proposed to be a basis for understanding the actions of others by internally imitating the actions using one's own motor control circuits.
Of all the circuits, the motor circuit is the most studied due its importance to motor disorders. The direct pathway of the motor circuit is one in which projections from the cortex travel to the putamen directly to the internal segment of the globus pallidus (GPi also known as GP-Medial) or the substantia nigra, pars reticulata (SNr) and are then directed toward the ventral anterior nucleus ...
The swimming movement is produced by alternating neural activity between the left and right side of the body, causing it to bend back and forth while creating oscillating movements. While the Lamprey is bent to the left, there is reciprocal inhibition on the right side causing it to relax due to hyperpolarization.