When.com Web Search

  1. Ad

    related to: prove that is irrational number

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Perhaps the numbers most easy to prove irrational are certain logarithms. Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0).

  3. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus.

  4. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12] More generally, e q is irrational for any non-zero rational q. [13]

  5. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    Apéry's original proof [3] [4] was based on the well-known irrationality criterion from Peter Gustav Lejeune Dirichlet, which states that a number is irrational if there are infinitely many coprime integers p and q such that

  6. Hippasus - Wikipedia

    en.wikipedia.org/wiki/Hippasus

    Hippasus is sometimes credited with the discovery of the existence of irrational numbers, following which he was drowned at sea. Pythagoreans preached that all numbers could be expressed as the ratio of integers, and the discovery of irrational numbers is said to have shocked them. However, the evidence linking the discovery to Hippasus is unclear.

  7. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    It was probably the first number known to be irrational. [1] The fraction ⁠ 99 / 70 ⁠ (≈ 1.4142 857) is sometimes used as a good rational approximation with a reasonably small denominator . Sequence A002193 in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here ...

  8. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  9. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.