When.com Web Search

  1. Ad

    related to: is fission energy possible in space for life quizlet physics quiz

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear power in space - Wikipedia

    en.wikipedia.org/wiki/Nuclear_power_in_space

    After the ban of nuclear weapons in space by the Outer Space Treaty in 1967, nuclear power has been discussed at least since 1972 as a sensitive issue by states. [8] Space nuclear power sources may experience accidents during launch, operation, and end-of-service phases, resulting in the exposure of nuclear power sources to extreme physical conditions and the release of radioactive materials ...

  3. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier than iron. Photodisintegration is responsible for the nucleosynthesis of at least some heavy, proton-rich elements via the p-process in supernovae of type Ib, Ic, or II. This causes the ...

  4. Cosmic ray spallation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_ray_spallation

    In contrast, the radioactive nuclide beryllium-7 falls into the same light element range but has a half-life too short for it to have been formed before the formation of the Solar System, so that it cannot be a primordial nuclide. Since the cosmic ray spallation route is the most likely source of beryllium-7 in the environment, that isotope is ...

  5. Nuclear power - Wikipedia

    en.wikipedia.org/wiki/Nuclear_power

    Nuclear power is a safe, sustainable energy source that reduces carbon emissions. This is because nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. "Economists estimate that each nuclear plant built could save more than 800,000 life years."

  6. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    The difference in energy production of this cycle, compared to the proton–proton chain reaction, is accounted for by the energy lost through neutrino emission. [22] CNO cycle is highly sensitive to temperature, with rates proportional to T^{16-20}, a 10% rise of temperature would produce a 350% rise in energy production.

  7. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    U nucleus has an excitation energy below the critical fission energy." [4]: 25–28 [5]: 282–287 [10] [11] About 6 MeV of the fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission.

  8. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    This releases, on average, three neutrons and a large amount of energy. The released neutrons then cause fission of other uranium atoms, until all of the available uranium is exhausted. This is called a chain reaction. Artificial nuclear transmutation has been considered as a possible mechanism for reducing the volume and hazard of radioactive ...

  9. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay , but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power ...