Search results
Results From The WOW.Com Content Network
Many aquatic animals have developed gills for respiration which are specifically adapted to their function. In fish, for example, they have: A large surface area to allow as much oxygen to enter the gills as possible because more of the gas comes into contact with the membrane; Good blood supply to maintain the concentration gradient needed
Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including ...
Most fish exchange gases using gills on either side of the pharynx (throat). Gills are tissues which consist of threadlike structures called filaments.These filaments have many functions and "are involved in ion and water transfer as well as oxygen, carbon dioxide, acid and ammonia exchange.
Gas exchange takes place in the gills which consist of thin or very flat filaments and lammellae which expose a very large surface area of highly vascularized tissue to the water. Other animals, such as insects , have respiratory systems with very simple anatomical features, and in amphibians , even the skin plays a vital role in gas exchange.
Gills or gill-like organs, located in different parts of the body, are found in various groups of aquatic animals, including mollusks, crustaceans, insects, fish, and amphibians. Semiterrestrial marine animals such as crabs and mudskippers have gill chambers in which they store water, enabling them to use the dissolved oxygen when they are on land.
In fish, gill lamellae are used to increase the surface area in contact with the environment to maximize gas exchange (both to attain oxygen and to expel carbon dioxide) between the water and the blood. [3] In fish gills, there are two types of lamellae, primary and secondary. The primary gill lamellae (also called gill filament) extends from ...
The primary sites of gas exchange in marine teleosts, the gills, are also responsible for osmoregulation. Because gills are designed to increase surface area and minimize diffusion distance for gas exchange between the blood and water, they may contribute to the problem of water loss by osmosis and passive salt gain. This is called the osmo ...
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.