When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  3. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are the point's distance from a reference point called the pole, and; the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole.

  4. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.

  5. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  6. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Alternatively, the conversion can be considered as two sequential rectangular to polar conversions: the first in the Cartesian xy plane from (x, y) to (R, φ), where R is the projection of r onto the xy-plane, and the second in the Cartesian zR-plane from (z, R) to (r, θ).

  7. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The Z part of the equation is a function of z alone, and must therefore be equal to a constant: ¨ = where k is, in general, a complex number. For a particular k, the Z(z) function has two linearly independent solutions.

  8. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    x, y, and z are all functions of the independent variable t which ranges over the real numbers. (x 0, y 0, z 0) is any point on the line. a, b, and c are related to the slope of the line, such that the vector (a, b, c) is parallel to the line.

  9. Binet equation - Wikipedia

    en.wikipedia.org/wiki/Binet_equation

    The Binet equation, derived by Jacques Philippe Marie Binet, provides the form of a central force given the shape of the orbital motion in plane polar coordinates.The equation can also be used to derive the shape of the orbit for a given force law, but this usually involves the solution to a second order nonlinear, ordinary differential equation.