Search results
Results From The WOW.Com Content Network
It has been known for more than one hundred years that an intravenous injection of histamine causes a fall in the blood pressure. [30] The underlying mechanism concerns both vascular hyperpermeability and vasodilation. Histamine binding to endothelial cells causes them to contract, thus increasing vascular leak.
These endothelial products include nitric oxide and endothelin-1 that are released in response to either chemical stimuli, like histamine, or increased shear stress on the blood vessel (meaning the amount of stress exerted by blood on the blood vessel walls). While nitric oxide causes vasodilation, endothelin-1 causes vasoconstriction.
Vasodilation and increased permeability of capillaries are a result of both H1 and H2 receptor types. [34] Stimulation of histamine activates a histamine (H2)-sensitive adenylate cyclase of oxyntic cells, and there is a rapid increase in cellular [cAMP] that is involved in activation of H+ transport and other associated changes of oxyntic cells ...
Anaphylactic shock is caused by a severe anaphylactic reaction to an allergen, antigen, drug, or foreign protein causing the release of histamine which causes widespread vasodilation, leading to hypotension and increased capillary permeability. Signs of anaphylaxis Signs typically occur after exposure to an allergen and may include:
Ways to enhance blood flow. For premium support please call: 800-290-4726 more ways to reach us
The histamine receptor H 2 belongs to the rhodopsin-like family of G protein-coupled receptors. It is an integral membrane protein and stimulates gastric acid secretion. It also regulates gastrointestinal motility and intestinal secretion and is thought to be involved in regulating cell growth and differentiation. [ 6 ]
Degranulation is a cellular process that releases antimicrobial, cytotoxic, or other molecules from secretory vesicles called granules found inside some cells. It is used by several different cells involved in the immune system , including granulocytes ( neutrophils , basophils , eosinophils , and mast cells ).
Normal blood vessel (left) vs. vasodilation (right) Vasodilation, also known as vasorelaxation, is the widening of blood vessels. [1] It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. [2]