When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Koutecký–Levich equation - Wikipedia

    en.wikipedia.org/wiki/Koutecký–Levich_equation

    The Koutecký–Levich equation models the measured electric current at an electrode from an electrochemical reaction in relation to the kinetic activity and the mass transport of reactants. A visualization of the Koutecký–Levich equation. The graph shows the measured current as a function of the mass transport current for given kinetic current.

  3. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    Recall that the main implication and difficulty of the KL transformation is computing the eigenvectors of the linear operator associated to the covariance function, which are given by the solutions to the integral equation written above. Define Σ, the covariance matrix of X, as an N × N matrix whose elements are given by:

  4. Levich equation - Wikipedia

    en.wikipedia.org/wiki/Levich_equation

    The Levich equation is written as: = where I L is the Levich current (A), n is the number of moles of electrons transferred in the half reaction (number), F is the Faraday constant (C/mol), A is the electrode area (cm 2), D is the diffusion coefficient (see Fick's law of diffusion) (cm 2 /s), ω is the angular rotation rate of the electrode (rad/s), ν is the kinematic viscosity (cm 2 /s), C ...

  5. Generator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Generator_(mathematics)

    In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .

  6. Gyrator–capacitor model - Wikipedia

    en.wikipedia.org/wiki/Gyrator–capacitor_model

    A simple transformer and its gyrator-capacitor model. R is the reluctance of the physical magnetic circuit. The gyrator–capacitor model [1] - sometimes also the capacitor-permeance model [2] - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model.

  7. Thiele/Small parameters - Wikipedia

    en.wikipedia.org/wiki/Thiele/Small_parameters

    A typical 110-mm diameter full-range driver with an of 95 Hz at 0.5 V signal level, might drop to 64 Hz when fed a 5 V input. A driver with a measured V a s {\displaystyle V_{\rm {as}}} of 7 L at 0.5 V, may show a V a s {\displaystyle V_{\rm {as}}} increase to 13 L when tested at 4 V. Q m s {\displaystyle Q_{\rm {ms}}} is typically stable ...

  8. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model instead of P when the actual distribution is P. While it is a measure of how different two distributions are, and in some sense is thus a "distance", it is not actually a metric , which is the most familiar and formal type of distance.

  9. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    It is a two-equation model which gives a general description of turbulence by means of two transport equations (PDEs). The original impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.