Search results
Results From The WOW.Com Content Network
In 1847, Carl Bergmann published his observations that endothermic body size (i.e. mammals) increased with increasing latitude, commonly known as Bergmann's rule. [9] His rule postulated that selection favored within species individuals with larger body sizes in cooler temperatures because the total heat loss would be diminished through lower surface area to volume ratios. [8]
Bergmann's rule - Penguins on the Earth (mass m, height h) [1] Bergmann's rule is an ecogeographical rule that states that, within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, while populations and species of smaller size are found in warmer regions.
This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [9] [page needed]
The temperature of the troposphere decreases with increased altitude, and the rate of decrease in air temperature is measured with the Environmental Lapse Rate (/) which is the numeric difference between the temperature of the planetary surface and the temperature of the tropopause divided by the altitude.
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K).
Potential temperature is a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height, [3] > and vertical motions are suppressed. If the potential temperature decreases with height, [3]
The temperature of the thermosphere gradually increases with height and can rise as high as 1500 °C (2700 °F), though the gas molecules are so far apart that its temperature in the usual sense is not very meaningful.