When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems

  3. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  5. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]

  6. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Nevertheless, in affine geometry a pencil of parallel lines is taken as an equivalence class in the set of lines where parallelism is an equivalence relation. [ 18 ] [ 19 ] [ 20 ] To this end, Emil Artin (1957) adopted a definition of parallelism where two lines are parallel if they have all or none of their points in common. [ 21 ]

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes.

  8. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  9. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.