Search results
Results From The WOW.Com Content Network
In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.
Calculating the median in data sets of odd (above) and even (below) observations. The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value.
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.
Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".
The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers, so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics).