When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  3. Arithmetic underflow - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_underflow

    Even when using gradual underflow, the nearest value may be zero. [8] The absolute distance between adjacent floating-point values just outside the gap is called the machine epsilon, typically characterized by the largest value whose sum with the value 1 will result in the answer with value 1 in that floating-point scheme. [9]

  4. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ...

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  6. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  7. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    There is not much faith in the accuracy of the value because the most uncertainty in any floating-point number is the digits on the far right. For example, 1.99999 × 10 2 − 1.99998 × 10 2 = 0.00001 × 10 2 = 1 × 10 − 5 × 10 2 = 1 × 10 − 3 {\displaystyle 1.99999\times 10^{2}-1.99998\times 10^{2}=0.00001\times 10^{2}=1\times 10^{-5 ...

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.

  9. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.