When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  4. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Series definition; Taylor series ... Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...

  6. Non-analytic smooth function - Wikipedia

    en.wikipedia.org/wiki/Non-analytic_smooth_function

    so that the radius of convergence of the Taylor series of > at is 0 by the Cauchy-Hadamard formula. Since the set of analyticity of a function is an open set, and since dyadic rationals are dense , we conclude that F > q {\displaystyle F_{>q}} , and hence F {\displaystyle F} , is nowhere analytic in R {\displaystyle \mathbb {R} } .

  7. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...

  8. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation = +, where B t is a Wiener process.

  9. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.