When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernstein polynomial - Wikipedia

    en.wikipedia.org/wiki/Bernstein_polynomial

    Moreover, this relation holds uniformly in x, which can be seen from its proof via Chebyshev's inequality, taking into account that the variance of 1 ⁄ n K, equal to 1 ⁄ n x(1−x), is bounded from above by 1 ⁄ (4n) irrespective of x. Because ƒ, being continuous on a closed bounded interval, must be uniformly continuous on that interval ...

  3. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  4. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The function's integral is equal to over any set because the function is equal to zero almost everywhere. If G = { ( x , f ( x ) ) : x ∈ ( 0 , 1 ) } ⊂ R 2 {\displaystyle G=\{\,(x,f(x)):x\in (0,1)\,\}\subset \mathbb {R} ^{2}} is the graph of the restriction of f {\displaystyle f} to ( 0 , 1 ) {\displaystyle (0,1)} , then the box-counting ...

  6. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ(x) = x + 1/x, which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits

  7. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    A Darboux function is a real-valued function ƒ which has the "intermediate value property": for any two values a and b in the domain of ƒ, and any y between ƒ(a) and ƒ(b), there is some c between a and b with ƒ(c) = y. [4] By the intermediate value theorem, every continuous function on a real interval is a Darboux function. Darboux's ...

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    X axis = multiplier. Y axis = product. Extension of this pattern into other quadrants gives the reason why a negative number times a negative number yields a positive number. Note also how multiplication by zero causes a reduction in dimensionality, as does multiplication by a singular matrix where the determinant is 0. In this process ...