Search results
Results From The WOW.Com Content Network
If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1) distributions. The Bates distribution is the average of n i.i.d. U(0,1) distributions. The standard uniform distribution is a special case of the beta distribution, with ...
The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a ...
The distribution of the product of a random variable having a uniform distribution on (0,1) with a random variable having a gamma distribution with shape parameter equal to 2, is an exponential distribution. [18]
However, instead of summing n equal uniform distributions, we could also add e.g. U + 0.5U to address also the case n = 1.5 (giving a trapezoidal distribution). The Irwin–Hall distribution has an application to beamforming and pattern synthesis in Figure 1 of reference [2] [3]
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
[3] For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
The problem of estimating the maximum of a discrete uniform distribution on the integer interval [,] from a sample of k observations is commonly known as the German tank problem, following the practical application of this maximum estimation problem, during World War II, by Allied forces seeking to estimate German tank production.