Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Both processes rely on osmosis with membranes. The key waste product is brackish water ...
Statkraft osmotic power prototype is the world's first osmotic power plant, based on the energy of osmosis. The power plant is run by Statkraft. The power plant is located at Tofte in Hurum, Norway, with rooms at the factory area at Södra Cell Tofte cellulose factory. The power plant uses the osmotic gradient that occurs when fresh water and ...
B: Osmosis unit with membrane. Energy recovery can reduce energy consumption by 50% or more. Much of the input energy can be recovered from the concentrate flow, and the increasing efficiency of energy recovery devices greatly reduces energy requirements. Devices used, in order of invention, are:
Forward osmosis (FO) is an osmotic process that, like reverse osmosis (RO), ... The second separation step, however does typically require energy input. One method ...
Pressure retarded osmosis (PRO) is a technique to separate a solvent (for example, fresh water) from a solution that is more concentrated (e.g. sea water) and also pressurized. A semipermeable membrane allows the solvent to pass to the concentrated solution side by osmosis . [ 1 ]
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
Chemiosmotic coupling between the energy of sunlight, bacteriorhodopsin and phosphorylation (chemical energy) during photosynthesis in the halophilic archaeal organism Halobacterium salinarum (syn. H. halobium). The archaeal cell wall is omitted. [6] [7] Bacteria and archaea also can use chemiosmosis to generate ATP.