When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  3. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification. Substituting heteroskedasticity-consistent standard errors does not resolve this misspecification, which may lead to bias in the coefficients. In most situations, the problem should be found and fixed. [5]

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n, where df is the number of degrees of freedom (n minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the ...

  5. Generalized estimating equation - Wikipedia

    en.wikipedia.org/.../Generalized_estimating_equation

    GEE estimates the average response over the population ("population-averaged" effects) with Liang-Zeger standard errors, and in individuals using Huber-White standard errors, also known as "robust standard error" or "sandwich variance" estimates. [3]

  6. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In some disciplines, the RMSD is used to compare differences between two things that may vary, neither of which is accepted as the "standard". For example, when measuring the average difference between two time series x 1 , t {\displaystyle x_{1,t}} and x 2 , t {\displaystyle x_{2,t}} , the formula becomes

  7. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    This formula is based on the linear characteristics of the gradient of and therefore it is a good estimation for the standard deviation of as long as ,,, … are small enough. Specifically, the linear approximation of f {\displaystyle f} has to be close to f {\displaystyle f} inside a neighbourhood of radius s x , s y , s z , … {\displaystyle ...

  8. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The above equations are efficient to use if the mean of the x and y variables (¯ ¯) are known.If the means are not known at the time of calculation, it may be more efficient to use the expanded version of the ^ ^ equations.

  9. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .