Search results
Results From The WOW.Com Content Network
Asymptotic analysis is a key tool for exploring the ordinary and partial differential equations which arise in the mathematical modelling of real-world phenomena. [3] An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow.
A further application of this asymptotic expansion is for complex argument z with constant Re(z). See for example the Stirling formula applied in Im(z) = t of the Riemann–Siegel theta function on the straight line 1 / 4 + it.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞ .
It is a term commonly encountered in computer science research as a result of widespread use of big-O notation. More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).
In formal mathematics, rates of convergence and orders of convergence are often described comparatively using asymptotic notation commonly called "big O notation," which can be used to encompass both of the prior conventions; this is an application of asymptotic analysis.
In theoretical analysis of algorithms it is common to estimate their complexity in the asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. Big O notation , Big-omega notation and Big-theta notation are used to this end. [ 2 ]
With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation , such as the number of (parallel) processors.