Search results
Results From The WOW.Com Content Network
The preimage of an output value is the set of input values that produce . More generally, evaluating f {\displaystyle f} at each element of a given subset A {\displaystyle A} of its domain X {\displaystyle X} produces a set, called the " image of A {\displaystyle A} under (or through) f {\displaystyle f} ".
In words, given two programs, if the first program is in the set of programs satisfying the property and two programs are computing the same thing, then also the second program satisfies the property. This means that if one program with a certain property is in the set, all programs computing the same function must also be in the set).
Conversely, if is a Hausdorff space and is a closed set, then the coimage of , if given the quotient space topology, must also be a Hausdorff space. A space is compact if and only if the kernel of every family of closed subsets having the finite intersection property (FIP) is non-empty; [ 4 ] [ 5 ] said differently, a space is compact if ...
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
An embedding h: N → M is called an elementary embedding of N into M if h(N) is an elementary substructure of M. A substructure N of M is elementary if and only if it passes the Tarski–Vaught test : every first-order formula φ ( x , b 1 , …, b n ) with parameters in N that has a solution in M also has a solution in N when evaluated in M .
The standard construction of the Cantor set is an example of a null uncountable set in ; however other constructions are possible which assign the Cantor set any measure whatsoever. All the subsets of R n {\displaystyle \mathbb {R} ^{n}} whose dimension is smaller than n {\displaystyle n} have null Lebesgue measure in R n . {\displaystyle ...
If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori , every subset of A is measurable. If A is Lebesgue-measurable and x is an element of R n , then the translation of A by x , defined by A + x = { a + x : a ∈ A }, is also Lebesgue-measurable and has the same measure as A .