Search results
Results From The WOW.Com Content Network
Noise-induced hearing loss (NIHL) is a hearing impairment resulting from exposure to loud sound.People may have a loss of perception of a narrow range of frequencies or impaired perception of sound including sensitivity to sound or ringing in the ears. [1]
PTA can be used to differentiate between conductive hearing loss, sensorineural hearing loss and mixed hearing loss. A hearing loss can be described by its degree i.e. mild, moderate, severe or profound, or by its shape i.e. high frequency or sloping, low frequency or rising, notched, U-shaped or 'cookie-bite', peaked or flat.
Infrasound arrays at monitoring station in Qaanaaq, Greenland.. Infrasound, sometimes referred to as low frequency sound or subsonic, describes sound waves with a frequency below the lower limit of human audibility (generally 20 Hz, as defined by the ANSI/ASA S1.1-2013 standard). [1]
The acoustic reflex (also known as the stapedius reflex, [1] stapedial reflex, [2] auditory reflex, [3] middle-ear-muscle reflex (MEM reflex, MEMR), [4] attenuation reflex, [5] cochleostapedial reflex [6] or intra-aural reflex [6]) is an involuntary muscle contraction that occurs in the middle ear in response to loud sound stimuli or when the person starts to vocalize.
As blood temperature rises, TTS increases when paired with high-frequency noise exposure. [12] It is hypothesized that hair cells for high-frequency transduction require a greater oxygen supply than others, and the two simultaneous metabolic processes can deplete any oxygen reserves of the cochlea. [ 27 ]
Flicker vertigo, sometimes called the Bucha effect, is "an imbalance in brain-cell activity caused by exposure to low-frequency flickering (or flashing) of a relatively bright light." [ 1 ] It is a disorientation -, vertigo -, and nausea -inducing effect of a strobe light flashing at 1 Hz to 20 Hz, approximately the frequency of human brainwaves .
Sound streams arriving from the left or right (the horizontal plane) are localised primarily by the small time differences of the same sound arriving at the two ears. A sound straight in front of the head is heard at the same time by both ears. A sound to the side of the head is heard approximately 0.0005 seconds later by the ear furthest away.
When the subject hears the sound, they indicate this by raising a hand or pressing a button. The lowest intensity they can hear is recorded. The test varies for children; their response to the sound can be indicated by a turn of the head or by using a toy. The child learns what to do upon hearing the sound, such as placing a toy man in a boat.