When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r.

  3. Log-polar coordinates - Wikipedia

    en.wikipedia.org/wiki/Log-polar_coordinates

    Log-polar coordinates in the plane consist of a pair of real numbers (ρ,θ), where ρ is the logarithm of the distance between a given point and the origin and θ is the angle between a line of reference (the x-axis) and the line through the origin and the point.

  4. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C. If a point A lies on the polar line q of another point Q, then Q lies on the polar line a of A. More generally, the polars of all the points on the line q must pass through its pole Q.

  5. Butterfly curve (transcendental) - Wikipedia

    en.wikipedia.org/wiki/Butterfly_curve...

    The curve is given by the following parametric equations: [2] = ... or by the following polar equation: = ...

  6. Polar curve - Wikipedia

    en.wikipedia.org/wiki/Polar_curve

    The p-th polar of a C for a natural number p is defined as Δ Q p f(x, y, z) = 0. This is a curve of degree n−p. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.

  7. Limaçon - Wikipedia

    en.wikipedia.org/wiki/Limaçon

    Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = (⁠ 1 / 2 ⁠, 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.

  8. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    Archimedean spiral represented on a polar graph The Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance (equal to 2 πb if θ is measured in radians ), hence the name "arithmetic spiral".

  9. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.