Search results
Results From The WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
1 Young's modulus. 2 Poisson's ratio. 3 Bulk modulus. 4 Shear modulus. 5 References. 6 See also. Toggle the table of contents. Elastic properties of the elements ...
Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
room temperature. Calculated using Wikipedia reported values for density (21450 kg/m 3), Young's Modulus (167 GPa), and Poisson's ratio (0.38) CRC: 3260: 1730: 2800: CRC cites American Institute of Physics Handbook (AIPH) table 3f-2 for this value, but in AIPH table 2f-6 there are elastic constants reported that yield 3700,1570, 2620 WEL: 2680 ...
The bulk modulus (or or ) of a substance is a measure of ... and Young's modulus describes the response to normal (lengthwise stretching) stress. For a ...
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for short