When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Six factor formula - Wikipedia

    en.wikipedia.org/wiki/Six_factor_formula

    The multiplication factor, k, is defined as (see nuclear chain reaction): k = ⁠ number of neutrons in one generation / number of neutrons in preceding generation ⁠. If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    For a neutron, the result of this calculation is that the magnetic moment of the neutron is given by μ n = 4/3 μ d − 1/3 μ u, where μ d and μ u are the magnetic moments for the down and up quarks, respectively. This result combines the intrinsic magnetic moments of the quarks with their orbital magnetic moments, and assumes the three ...

  4. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0

  5. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z.

  6. Four factor formula - Wikipedia

    en.wikipedia.org/wiki/Four_factor_formula

    The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]

  7. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    To calculate the binding energy we use the formula Z (m p + m e) + N m n − m nuclide where Z denotes the number of protons in the nuclides and N their number of neutrons. We take m p = 938.272 0813 (58) MeV/c 2, m e = 0.510 998 9461 (30) MeV/c 2 and m n = 939.565 4133 (58) MeV/c 2.

  8. Neutron cross section - Wikipedia

    en.wikipedia.org/wiki/Neutron_cross_section

    In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...

  9. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    An example is calcium-40, with 20 neutrons and 20 protons, which is the heaviest stable isotope made of the same number of protons and neutrons. Both calcium-48 and nickel-48 are doubly magic because calcium-48 has 20 protons and 28 neutrons while nickel-48 has 28 protons and 20 neutrons. Calcium-48 is very neutron-rich for such a relatively ...